skip to content

Interactions between Dynamics of Group Actions and Number Theory

Participation in INI programmes is by invitation only. Anyone wishing to apply to participate in the associated workshop(s) should use the relevant workshop application form.

9th June 2014 to 4th July 2014
Anish Ghosh University of East Anglia, Tata Institute of Fundamental Research
Alex Gorodnik University of Bristol
Barak Weiss [Ben Gurion University of the Negev]


Scientific Advisory Committee: Ben Green (Cambridge), Dmitry Kleinbock (Brandeis), Philippe Michel (Lausanne)

Programme Theme

GAN identifier: density plots for eigenfunctions of the Laplace operator on the modular surface

In the last decade there have been several important breakthroughs in Number Theory and Diophantine Geometry, where progress on long-standing open problems has been achieved by utilising ideas originated in the theory of dynamical systems on homogeneous spaces. Dynamical systems techniques are applicable to a wide range of number-theoretic objects that have many symmetries. In particular:

  • various question in Diophantine approximation have been studied using recurrence properties of flows on the space of unimodular lattices
  • diagonal flows have played an important role in recent advances on quantum chaos and in the proof of the quantum unique ergodicity conjecture for arithmetic surfaces
  • flows on homogeneous spaces of nilpotent groups have been used to produce new estimates on exponential sums and to study prime solutions of systems of linear equations
  • the distribution of periodic orbits is connected to behaviour of period integrals of automorphic forms and to the problem of establishing subconvexity bounds for L-functions

The aim of this programme is to bring together researchers working in Number Theory and Homogeneous Dynamics to discuss the recent developments and open problems that lie at the crossroads of these fields and to encourage more interaction among people working in these diverse areas.

Images produced by Alex Barnett and Holger Then

Final Scientific Report: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons